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• Design and construct a concrete canoe
• Maximum length/width: 22 feet/3 feet

• Minimum reinforcement percent open area: 40%

• No stain or paint 

• Participate in ASCE Pacific Southwest Conference (PSWC)
• Judged on technical paper, oral presentation, final product, 

paddling races

• Galaxy theme
Figure 1: 2016 Concrete Canoe
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Project Description 
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• Hull Design
• Maximum Length: 21 ft
• Maximum Width: 27 in (2 ft-3 in)
• Maximum Depth: 14 in (1 ft-2 in)
• Uniform Thickness: 0.5 in

Hull Design

POLARIS

Figure 2: Prolines Software Model

Figure 3: Longitudinal Cross Section
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Hull Analysis

Improvements:

• Linear relationship to cubic function

Calculated Waterlines:
• Fully Submersed: 0.2 in

• 4-Person: 6.9 in

• 2-Men: 8.5 in

• 2-Women: 9 in

Figure 4: Buoyant Force vs. Waterline Comparison 4



• Structural Analysis
• Hull Capacity vs Demand: 

• 1”x1”x.5” Panels: 1715.9 psi (425.24 psi)
• WT-Shape Ribs: 5290.6 psi (425.24 psi)
• Transverse Cross-Section:

• Tension Face: 917.5 psi (145.7 psi)

• Compression Face: 1319.5 psi (151.7 psi)

Structural Analysis

POLARIS

Figure 5: Longitudinal Moment Comparison

Figure 6: Transverse Moment Comparison
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Concrete Constituents (% volume)
• EkkoMaxx Fly Ash:  21.2%

• Poraver (0.5-1mm): 36.0%

• 3M Glass Bubbles (K20 & S32): 23.7%

• BASF Black Liquid Pigment: 2.9%

• MB AE 90 Air Entrainer:  0.1%

• Water:  10.5% 

• Additives: 5.6%

• BASF Master Fibers

Concrete Mix Design 

POLARIS

Table 1: Structural Mix Properties

Dry Unit Weight 59 pcf (<62.4 pcf)

28-day Compressive Strength 1950 psi 

28-day Tensile Strength 190 psi

28-day Flexural Strength 1230 psi

Figure 7: Compression Test Figure 8: Tensile Test Figure 9: Flexural Test
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• Selected primary reinforcement from five 
different materials
• Strength and elongation
• SpiderLath Fiberglass Mesh
• Tensile Strength: 756 lb.
• Elongation: 0.25 in
• Percent Open Area: 62.6%

Reinforcement 

POLARIS

Table 2: Reinforcement  Alternatives

Material SpiderLath 
Fiberglass 

Mesh [6]

Dryvit
Reinforcing 

Mesh [7]

TriAx Geogrid 
[8]

Parex Glass Fiber 
Reinforcing Mesh [9]

Glasgrid Pavement 
Reinforcing System 

[10]

Strength  (lb) 756 102 72 135 181

Elongation (in) 0.25 .07 0.62 .08 .04
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Reinforcement Overlap
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Figure 11: Overlap TestFigure 10: Overlap Samples

• Created composite samples of 
reinforcement and concrete

• Represented placement of reinforcement 
in canoe 

• Tested overlap lengths of 2 in., 4 in., and 6 
in.

• All overlap lengths worked 
• Chose 4 in. to be conservative 

Figure 12: Reinforcement Placement 8



• System composed of six  1/16’’ galvanized steel 
cables placed symmetrically about the centroid

• Cables tensioned to 95 lbs., resulting in 57  lbs. 
of tension after losses 
• Total axial compression: 342 lbs.
• Aids in reducing large cracks

Post-Tensioning 
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Figure 13: Post Tensioning System

Figure 14: Anchorage System Figure 15: Post Tensioning Canoe
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Figure 19: Apply Reinforcement

Figure 18: Apply Post-Tensioning

POLARIS

Canoe Pour and Curing 

Figure 16: Spray 1/8” Concrete onto Mold Figure 17: Apply Reinforcement over Ribs & Center

Figure 20: Trowel Final Layer of Concrete Figure 21: Construct Curing Structure Figure 22: Moisture Cure for 21-days

10



Finishing

POLARIS

Figure 23: Dry Sand Canoe Figure 24: Wet Sand Canoe Figure 25: Carve and Etch Concrete Figure 26: Seal Canoe
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Final Product 
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Figure 27: Completed Ribs Figure 30: Bow DesignFigure 29: 3D ElementFigure 28: Stern Design
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Conference Results
• 6th place overall finish

• 3rd place for design paper

• 4th place for final product

• 13th place for racing

• 15th place for oral presentation Figure 31: Canoe at Conference

Figure 34: Canoe Cutaway SectionFigure 33: Conference DisplayFigure 32: Team Photo
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Schedule
Table 3: Scheduled versus Actual Completion Date
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Cost 

Saved almost $6,000

● ~ $4,000 in Personnel

● ~ $1,000 in Travel

● ~ $1,000 in Expenditures

Table 4: Actual Cost of Engineering Services
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Impacts
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Institutional Impacts
• Provides civil engineering students hands-on practical experience and improves  leadership skills

• Knowledge and lessons learned for future NAU teams

• NAU Civil Engineering Department

Broader Impacts
• Use of CeraTech’s EkkoMaxx cement – 100% sustainable material

• Increases awareness among students, educators, and professionals of concrete technology and 
innovation
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THANK YOU 

Presenting: 

POLARIS
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