

NORTHERN ARIZONA UNIVERSITY

CHELSIE KEKAULA COLTON MCCONNELL BRENT LIPAR EVAN KAICHI EMILY MELKESIAN

Project Description

- Design and construct a concrete canoe
 - Maximum length/width: 22 feet/3 feet
 - Minimum reinforcement percent open area: 40%
 - No stain or paint
- Participate in ASCE Pacific Southwest Conference (PSWC)
 - Judged on technical paper, oral presentation, final product, paddling races
- Galaxy theme

Figure 1: 2016 Concrete Canoe

Hull Design

Hull Design

- Maximum Length: 21 ft
- Maximum Width: 27 in (2 ft-3 in)
- Maximum Depth: 14 in (1 ft-2 in)
- Uniform Thickness: 0.5 in

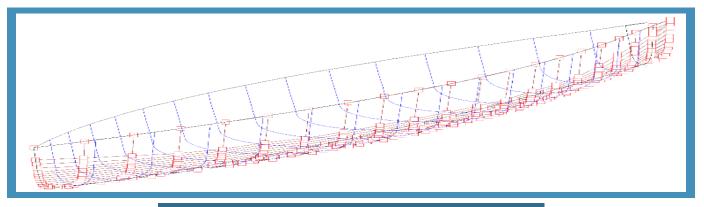


Figure 2: Prolines Software Model

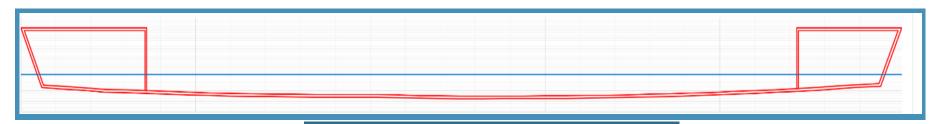


Figure 3: Longitudinal Cross Section

Hull Analysis

Improvements:

• Linear relationship to cubic function

Calculated Waterlines:

- Fully Submersed: 0.2 in
- 4-Person: 6.9 in
- 2-Men: 8.5 in
- 2-Women: 9 in

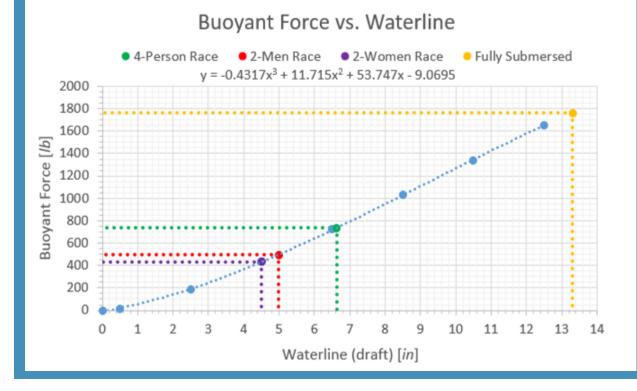
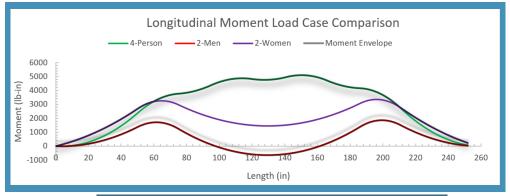



Figure 4: Buoyant Force vs. Waterline Comparison

Structural Analysis

Structural Analysis

- Hull Capacity vs Demand:
 - 1"x1"x.5" Panels: 1715.9 psi (425.24 psi)
 - WT-Shape Ribs: 5290.6 psi (425.24 psi)
 - Transverse Cross-Section:
 - Tension Face: 917.5 psi (145.7 psi)
 - Compression Face: 1319.5 psi (151.7 psi)

Figure 5: Longitudinal Moment Comparison

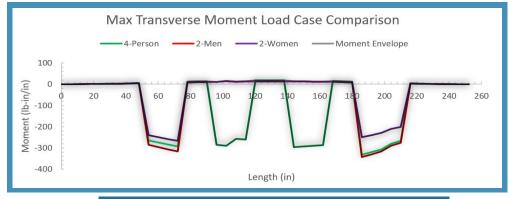


Figure 6: Transverse Moment Comparison

Concrete Mix Design

Concrete Constituents (% volume)

- EkkoMaxx Fly Ash: 21.2%
- Poraver (0.5-1mm): 36.0%
- 3M Glass Bubbles (K2O & S32): 23.7%
- BASF Black Liquid Pigment: 2.9%
- MB AE 90 Air Entrainer: 0.1%
- Water: 10.5%
- Additives: 5.6%
- BASF Master Fibers

Table 1: Structural MIX Properties			
Dry Unit Weight	59 pcf (<62.4 pcf)		
28-day Compressive Strength	1950 psi		
28-day Tensile Strength	190 psi		
28-day Flexural Strength	1230 psi		

Letural Mix Dranauti

Figure 9: Flexural Test

Reinforcement

- Selected primary reinforcement from five different materials
 - Strength and elongation
 - SpiderLath Fiberglass Mesh
 - Tensile Strength: 756 lb.
 - Elongation: 0.25 in
 - Percent Open Area: 62.6%

Table 2: Reinforcement Alternatives					
Material	SpiderLath Fiberglass Mesh [6]	Dryvit Reinforcing Mesh [7]	TriAx Geogrid	Parex Glass Fiber Reinforcing Mesh 🕅	Glasgrid Pavement Reinforcing System
			X		
Strength (lb)	756	102	72	135	181
Elongation (in)	0.25	.07	0.62	.08	.04

Reinforcement Overlap

- Created composite samples of reinforcement and concrete
- Represented placement of reinforcement in canoe
- Tested overlap lengths of 2 in., 4 in., and 6 in.
- All overlap lengths worked

POLARIS

• Chose 4 in. to be conservative

Figure 10: Overlap Samples

Figure 12: Reinforcement Placement

Post-Tensioning

- System composed of six 1/16" galvanized steel cables placed symmetrically about the centroid
- Cables tensioned to 95 lbs., resulting in 57 lbs. of tension after losses
 - Total axial compression: 342 lbs.
 - Aids in reducing large cracks

Figure 13: Post Tensioning System

Figure 14: Anchorage System

Figure 15: Post Tensioning Canoe

Canoe Pour and Curing

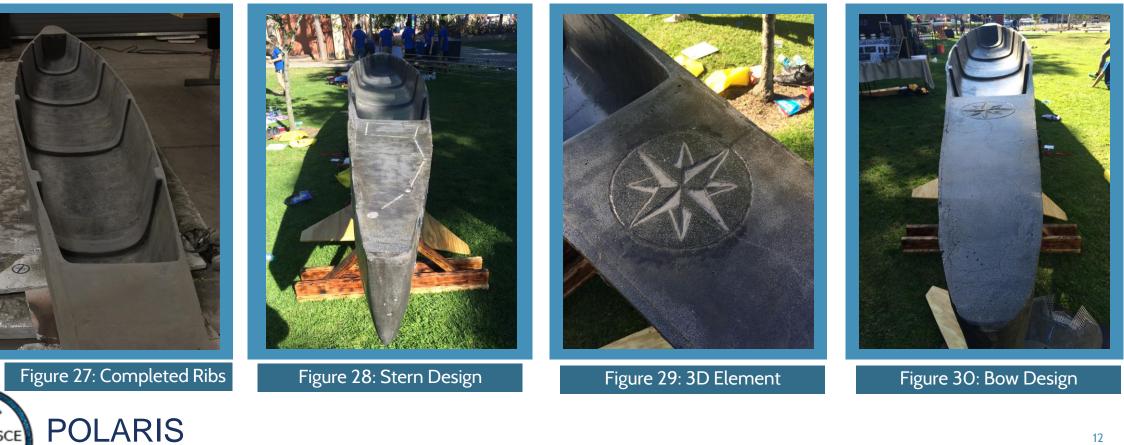
Figure 16: Spray 1/8" Concrete onto Mold

Figure 17: Apply Reinforcement over Ribs & Center

Figure 18: Apply Post-Tensioning

Figure 19: Apply Reinforcement Figure 20: Trowel Final Layer of Concrete

Figure 21: Construct Curing Structure



Finishing

Final Product

Conference Results

- 6th place overall finish
- 3rd place for design paper
- 4th place for final product
- 13th place for racing
- 15th place for oral presentation

Figure 31: Canoe at Conference

Figure 32: Team Photo

Schedule

Table 3: Scheduled versus Actual Completion Date

Task	Scheduled Completion Date	Actual Completion Date
1.0 Project Management		22
1.1 Safety Training	9/11/2015	9/11/2015
1.2 ASCE Competiton Rule Review	10/2/2015	10/2/2015
1.3 Budgeting, Fundraising and Scheduling	Ongoing	Ongoing
2.0 Testing and Analysis	10 70-	25
2.1 Reinforcement Selection	12/11/2015	12/11/2015
2.2 Concrete Mix Design Selection	1/15/2016	2/1/2016
2.3 Concrete-Reinforcement Composite Testing	1/31/2016	2/27/2016
2.4 Structural Verification	1/29/2016	2/6/2016

Key	
Completed On-Time	
Completed Late	

Task	Scheduled Completion Date	Actual Completion Date
3.0 Construction		
3.1 Renovate canoe mold, coffin	1/18/2016	1/18/2016
3.2 Pour Day Prep	2/10/2016	2/11/2016
3.3 Pour Day	2/12/2016	2/12/2016
3.4 Canoe Sanding/ Finishing	3/19/2016	3/28/2016
4.0 ASCE Pacific Southwest Conference		16
4.1 Internal Design Report Due	2/15/2016	2/23/2016
4.2 Final Design Report Due	3/2/2016	3/2/2016
5.0 CENE 486: Capstone Deliverables		
5.1 50% Design Report	3/10/2016	3/10/2016
5.2 Final Deliverables	5/12/2016	5/12/2016

Cost

Table 4: Actual Cost of Engineering Services

1.0 Personnel				
Classification	Billing Rate	Quantity	Unit	Cost
SENG	\$95 /hr	295	hr	\$28,025
ENG	\$64 /hr	260	hr	\$16,640
LAB	\$35 /hr	225	hr	\$7,875
INT	\$13 /hr	80	hr	\$1,040
AA	\$33 /hr	235	hr	\$7,755
		Tota	l Cost	\$61,335
2.0 Travel				
Item	Billing Rate	Quantity	Unit	Cost
Conference Registration	\$150 /person	7	people	\$1,050
Lodging/ Food	\$250 /person	7	people	\$1,750
Mileage	\$0.56 /mile	940	miles	\$526
		Tota	l Cost	\$3,326
3.0 Expenditures				
Item	Price	Quantity		Cost
Materials	\$4,850	Lump		\$4,850
Equipment	\$1,500	Lum	o Sum	\$1,500

Total Project Cost	\$71,011
Total Proposed Cost	\$76,943

Saved almost \$6,000

- ~ \$4,000 in Personnel ${\color{black}\bullet}$
- ~ \$1,000 in Travel
- ~ \$1,000 in Expenditures lacksquare

		Total Cost	05,520
0 Expenditures			
Item	Price	Quantity	Cost
laterials	\$4,850	Lump Sum	\$4,850
quipment	\$1,500	Lump Sum	\$1,500
		Total Cost	\$6,350

Impacts

Institutional Impacts

- Provides civil engineering students hands-on practical experience and improves leadership skills
- Knowledge and lessons learned for future NAU teams
- NAU Civil Engineering Department

Broader Impacts

- Use of CeraTech's EkkoMaxx cement 100% sustainable material
- Increases awareness among students, educators, and professionals of concrete technology and innovation

Acknowledgements

Mark Lamer **Thomas Nelson Gary Slim Robin Tuchscher Chris Hazel Gina Boschetto Dillion Corrington Stephanie Crocker** Hudson & Ann Kekaula Kaipo Kekaula Jimmie McConnell Wendy McConnell

Melkesian Family Kaichi Family Tommy Perkins Jeremy DeGeyter Cynthia Alvarez Henry and Glenna Wong Hank and Merle Miyamoto Zach Crimmins Paige Reilly Ian Connair Brando Gutierrez

References

- [1] ASTM (2004). "Compressive Strength of Cylindrical Concrete Specimens", C 39/C 39M-01, West Conshohocken, PA.
- [2] ASTM (2011). "Standard Performance Specification for Hydraulic Cement." C1157/C1157M-11, West Conshohocken, PA.
- [3] ASTM (2010). "Standard Specification for Fiber-Reinforced Concrete." C1116/C1116M-10a, West Conshohocken, PA.
- [4] ASTM (2016). "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)", C78 / C78M-15b, West Conshohocken, PA.
- [5] CeraTech (2012). CeraTech EkkoMAXX™: General Product Information and Specifications. URL: http://www.ceratechinc.com/Content /PDFs/ekkomaxx%20Green%20Concrete%20MSDS.pdf> (Sep. 9, 2015). Web.
- [6] SpiderLath URL:http://compositesandarchitecture.com/?p=3212
- [7] Photo taken by 2014-2015 Concrete Canoe Team
- [8] Photo taken by 2014-2015 Concrete Canoe Team
- [9] Photo taken by 2014-2015 Concrete Canoe Team
- [10] Photo taken by 2014-2015 Concrete Canoe Team

THANK YOU

Presenting: POLARIS

